Alignment-Free Sequence Comparison with Vector Quantization and Hidden Markov Models
نویسنده
چکیده
We introduce the concept of multiresolutions using vector quantization and hidden Markov models as a basis for alignment-free comparison of sequences. Different similarity measures can be discovered at different resolutions of the two sequences. The proposed approach provides a new aspect for studying the complexity of biological data and is effective for real-time processing.
منابع مشابه
A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences
The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...
متن کاملAlignment-free Sequence Analysis Using Extensible Markov Models
Profile models based on Hidden Markov Models (HMM) for sequence studies have gained visibility among researchers. While the mathematical foundation, the proven algorithms such as Viterbi, Forward and Backward algorithms have certainly provided a rigorous probabilistic platform, the requirement of classic alignment has ensured an extremely high time complexity. We propose the use of another kind...
متن کاملVQ - EM - Training - CodebookVQ - EM - Testing - 6 ? BAUM
This paper presents a scheme of speaker-independent isolated word recognition in which Hidden Markov Modelling is used with Vector Quantization codebooks constructed using the Expectation-Maximization (EM) algorithm for Gaussian mixture models. In comparison with conventional vector quantization, the EM algorithm results in greater recognition accuracy.
متن کاملModeling Chaotic Systems with Hidden Markov Models
The problem of modeling chaotic nonlinear dynamical systems using hidden Markov models is considered. A hidden Markov model for a class of chaotic systems is developed from noise-free observations of the output of that system. A combination of vector quantization and the Baum-Welch algorithm is used for training. The importance of this combined iterative approach is demonstrated. The model is t...
متن کاملGesture Classification Using Hidden Markov Models and Viterbi Path Counting
Human-Machine interfaces play a role of growing importance as computer technology continues to evolve. Motivated by the desire to provide users with an intuitive gesture input system, our work presented in this paper describes a Hidden Markov Model (HMM) based framework for hand gesture detection and recognition. The gesture is modeled as a hidden Markov model. The observation sequence used to ...
متن کامل